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Abstract. We extend the random anisotropy nematic spin model to study nematic-isotropic transitions in
porous media. A complete phase diagram is obtained. In the limit of relative low randomness the existence
of a triple point is predicted. For relatively large randomness we have found a depression in temperature
at the transition, together with a first order transition which ends at a tricritical point, beyond which
the transition becomes continuous. We use this model to investigate the motion of the nematic-isotropic
interface. We assume the system to be isothermal and initially quenched into the metastable régime of the
isotropic phase. Using an appropriate form of the free energy density we obtain the domain wall solutions
of the time-dependent Ginzburg-Landau equation. We find that including a random field leads to smaller
velocity of the interface and to larger interface width.

PACS. 64.70.Md Transitions in liquid crystals – 68.10.Jy Kinetics (evaporation, adsorption, condensation,
catalysis, etc.)

1 Introduction

Recently many studies have been devoted to liquid crys-
tals confined to randomly interconnected networks of
pores (for review see [1–5]). Liquid crystals immersed in
such matrices exhibit many interesting physical phenom-
ena such as modification of phase transitions, orientational
order, elastic properties, and a director field.

The isotropic-nematic phase transition of thermotropic
liquid crystals embedded in various kinds of porous media
(Anopore and Nuclepore membranes, aerogels, sintered
silica glasses, Vycor glass, and control porous glass are
commonly used) has been experimentally investigated us-
ing various techniques: calorimetry [6–10], dynamic light
scattering [11–13], static light scattering [6,14], magnetic
birefringence [15], NMR [7,16], and dielectric spectroscopy
[17]. The most important results inferred from these stud-
ies are the following. (i) Even at temperatures far above
the bulk isotropic-nematic phase transition temperature
there exists a weak residual nematic ordering at the en-
closed surface. Consequently, it is more appropriate to
call the corresponding phase paranematic rather then
isotropic. (ii) The nematic order is replaced by a quasi-
long-range nematic order having continuous but random
distorsions of the director. Usually this phase is called the
distorted nematic phase or speronematic phase. (iii) The
weakly first order isotropic-nematic phase transition tem-
peratures are shifted down a few degrees and the local
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orientational nematic order gradually increases for porous
matrices with characteristic cavity sizes below 0.1µm.

Some of the recent theoretical investigations of con-
fined liquid crystals [7,16] emphasize finite size and sur-
face effects always present in porous media. Stimulated by
de Gennes’ idea [19,20] (results of the experiments on the
phase separation of binary fluids in porous media could
be interpreted in terms of a random field Ising model) a
number of authors [21–23] have suggested that similar ran-
dom field-type-models may provide a useful context within
which to understand the physical properties of confined
liquid crystals. A Monte-Carlo study performed by Bellini
et al. [6] suggests that the isotropic-nematic phase tran-
sition temperature shift of 8CB confined in silica aerogel
emerges from a rather complicated coupling between the
surface phenomena and randomness.

The random-field-type models [21–23] assume that the
porous medium imposes a local field which has a ran-
domizing effect on the nematic director. Such a random-
izing field depending neither on temperature nor on the
phase structure of liquid crystal, is generally referred to
as quenched disorder. The structure of the confined liquid
crystal is the consequence of the competition between the
quenched disorder provided by the porous medium and
the elastic force which tends to minimize the distorsions
of the nematic director.

Maritan et al. [22] have carried out mean field analy-
sis of both the discrete three-state Potts model and the
Lebwohl-Lasher model [24]. In both cases they consider
an infinitely strong field oriented randomly on a frac-
tion p of the lattice sites, where p may be interpreted
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as the fraction of liquid crystal molecules directly affected
by the randomness of the pore geometry. Their analysis
predicts a first order isotropic-nematic phase transition at
a nonzero temperature for all p 6= 1, but the transition
temperature decreases with increasing p. Chakrabarti [18]
has carried out Monte-Carlo simulations for the Lebwohl-
Lasher model for different values of p in a finite ran-
dom field. The analysis brings out the fact that very low
strength of the random orienting field cannot destroy ne-
matic order, resulting in a first order isotropic-nematic
phase transition for all values of p, including p = 1.
For large strength, the nematic order is replaced by a
quasi-long-range nematic order (speronematic) phase. The
isotropic-speronematic phase transition is first order for
low p and second order for large p indicating the presence
of a tricritical point on the transition line. Cleaver et al.
[21] have carried out a Landau-de Gennes-type of mean
field analysis, incorporating the effect of a random orient-
ing field, which shows that the isotropic-nematic transi-
tion remains first order for low strength of the random
field, but becomes second order for high field strength. A
tricritical point is also predicted.

The first purpose of the present paper is to inves-
tigate the influence of a random orienting field on the
isotropic-nematic phase transition. We extend the random
anisotropy nematic model (RAN) of Cleaver et al. [21] to
include the competition between the quenched disorder
and the elastic force.

Little work has been done to characterize the influ-
ence of confinement on the different aspects of dynami-
cal behavior of confined liquid crystals. The confinement
influences the ordering and changes viscosity, which can
lead to a modification of the dynamics of the order pa-
rameter. The second aim of this paper is to study the
influence of the random orienting field on the dynamics of
formation of the nematic phase when the isotropic fluid is
cooled quickly, or quenched, to a temperature at which the
nematic is thermodynamically stable and the isotropic is
metastable. The kinetics of nematic-isotropic phase tran-
sition is governed by two dynamical processes: nucleation
and growth. Nucleation corresponds to the first appear-
ance of the nematic phase as a fluctuation in the original
isotropic phase; if the cost in free energy to create the
critical nucleus of nematic is large enough, the rate can
be quite small and the isotropic phase can persist in a
metastable state for a considerable period of time. The
growth process involves the propagation of the stable ne-
matic phase into the metastable isotropic phase.

A full theory of the kinetics of growth in a nematic-
isotropic phase transition would involve the variation in
space and time of two quantities: an order parameter that
distinguishes the two phases, and the temperature, which
affects the local driving force for the formation of the
new nematic phase. The sharp-interface (or Stefan-type
model) of solidification [25,26] assumes that the phase
boundary is infinitely narrow, so that the order param-
eter changes discontinuously across it. It is treated as
a delta-function source of heat, and the equation to be
solved is the heat flow equation with an explicit front-

tracking of the nematic-isotropic interface position [27].
The simplest approaches in this direction do not give ve-
locity selection, but rather permit steady-state solutions
over a range of velocities. The phase-field model, which
has been fruitfully used in studies of solidification [28–30],
provides an alternative approach according to which the
nematic-isotropic interface is modelled by a smooth tran-
sition region of finite width in the phase-field variable (or
order parameter) Q(r, t). The two phases correspond to
regions in which the values of Q are those pertaining to
the isotropic and nematic phases (local minima in Q of
the bulk free energy). The (nonconserved) order parame-
ter is governed by a nonlinear reaction-diffusion equation
of Ginzburg-Landau-type, which can be solved without
explicitly tracking the free boundary. The time-dependent
Ginzburg-Landau (TDGL) equation leads to definite pre-
dictions of dependence of velocity on the degree of under-
cooling [31,32]. Under normal circumstances, the TDGL
equation is combined with the corresponding equations
for other field variables (e.g., temperature). However, for
the case of growth of a nematic liquid crystal into a under-
cooled isotropic phase, the thermal field exhibits a charac-
teristic boundary-layer thickness KT /c (where KT is the
thermal diffusivity and c is the interface velocity) which is
a factor 103 times greater than the thickness of the inter-
face, so that the isothermal condition remains valid, and
the equation may be solved isothermally at a temperature
specified in the formulation of the problem.

This paper is organized as follows. In Section 2 we
extend the RAN model of Cleaver et al. [21] to include
the competition between the quenched disorder and the
elastic force. The results obtained for nematic-isotropic
phase transition are presented in Section 3. In Section 4
we present the solution of TDGL equation which describe
the moving interface. Finally in Section 5 we make some
concluding remarks.

2 Random anisotropy nematic model

Magnetic properties of a crystalline ferromagnet are de-
fined by two major factors: exchange interaction, which
leads to the parallel orientation of the neighbour spins,
and magnetic anisotropy, which aligns spins along some
preferable direction created by long-range crystalline or-
der (the easy axis).

There are two general models for amorphous mag-
netism which assume either random space distribution of
exchange [33] or random distribution of anisotropy axes
[34]. The later model, known as the random anisotropy
magnet (RAM) is described by the Hamiltonian

H = −J
∑

sisj −D
∑

(sini)2 (1)

where the exchange constant is J , and the first sum is
taken over nearest neighbour pairs. The unit magnetic
spins si are placed at site i of a lattice, the quantity ni is
a unit vector in a random direction marking the local easy
axis, and the degree of disorder (anisotropy) is given by



V. Popa-Nita: Statics and kinetics at the nematic-isotropic interface in porous media 85

the parameter D. The RAM model has been much studied
in the literature on magnetism [35,36].

A porous medium acts on the liquid crystal in two
ways [22]. First, it provides excluded volume and second,
chemical affinity effects introduce a preferential molecu-
lar orientation at the pore wall. The first effect should
be equivalent to the presence of a random exchange and
is considered to be of secondary importance. By analogy
with the RAM model, the second effect should be repre-
sented by the Hamiltonian

H = −J
∑

P2(SiSj)−D
∑

P2(Sini) (2)

where P2 is the second Legendre polynomial and Si is a
unit three-dimensional vector describing the orientation of
a rod-like molecule of the liquid crystal. The D = 0 case
is the familiar Lebwohl-Lasher lattice model of the liquid
crystal [24]. It has been argued that the phase transition
described by the Hamiltonian (2) may be in the spin glass
universality class.

We adopt the standard characterization [37] of the uni-
axial nematic order at position r at time t in terms of
the traceless symmetric second rank tensor Qij(r, t) (with
Cartesian indices i, j = 1, 2, 3)

Qij =
1
2
Q(3ninj − δij) (3)

where the unit vector n is the usual nematic director, and
Q is now the scalar (nonconserved) order parameter. In
the problem we consider in this paper, we shall suppose n
to be fixed in space and time, and the relevant physics is
given by Q(r, t).

The Landau-de Gennes free energy functional appro-
priate to the Hamiltonian of equation (2) is given by [37]

F [Q] =
∫
V

(fb + fr + fe)dV (4)

where fb, fr, and fe are the bulk, random, and elastic
parts of the free energy density, respectively, and V is the
volume of the system under consideration. The symmetry-
allowed expression for fb is given by [38],

fb = a(T − T ∗)Tr(Q2)−BTr(Q3) + C[Tr(Q2)]2 (5)

where T ∗ is the bulk undercooled temperature limit, and
the variation of the coefficients a, B, and C with temper-
ature T is assumed to be weak and will be neglected.

The random free energy density fr comes from the ran-
dom anisotropy term in equation (2). The element of ran-
domness comes in when one permits the director axis n
to point in arbitrary directions and to change significantly
over a spatial scale Ra which includes some molecular dis-
tances a. The earliest analysis of random systems was the
domain argument of Imry and Ma [39]. The main appli-
cation of their ideas to a random anisotropy nematic spin

model was made by Cleaver et al. [21]. We briefly review
that picture now.

The effect of a random field is averaged over a length
scale RQ, over which the orientation is correlated (the
characteristic scale of change of the order parameter).
Imagine creating a domain of linear dimension RQ which
contains a large number of sites (domains of linear di-
mension Ra). By the central limit theorem, the effective
random field which couples to the local order parameter is
reduced by a factor ofN1/2, whereN is the number of sites
in a region of dimension RQ (N = (RQ/Ra)3). The effec-
tive random field is thus approximately D(RQ/Ra)−3/2

and the corresponding free energy density fr is given by

fr = −D
(
RQ
Ra

)− 3
2

Q. (6)

According to a recent paper of Weinan and Palffy-
Muhoray [40], we emphasize that the expression (6) is
valid if the random field is slowly varying in space com-
pared to the coherence length. In this case the domain size
is comparable to the correlation length of of the random
field. When the field is rapidly varying, the domain size
becomes large, and approaches the Imry-Ma length, which
diverges as the strength of the random field goes to zero.

The final term fe comes from the elastic free energy
density,

fe =
1
2
L1 (∂iQjk)2 +

1
2
L2 (∂iQij)

2 (7)

where L1 and L2 are elastic constants, and the Einstein
summation convention is assumed. This term represents
the contribution to the free energy density given by the
surface of the domain. Now because Q is changing on a
length scale RQ, | 5Q | ' Q/RQ. Using the representa-
tion (3) for Q this term is given by

fe =
3
4
LQ2R−2

Q (8)

where L = 3
2L1 + 1

4L2 is the effective elastic constant.
The competition between quenched disorder provided

by the random field (6) and the elastic contribution to the
free energy density (8) is defined by the non-dimensional
parameter Λ = DR2

a/L.
In order to carry out calculations on this model it is

useful to introduce a new length scale ξ defined by

ξ2 = R2
Q − R2

a (9)

and to scale the variables in the following way

Q =
6C
B
Q; τ =

24a(T − T ∗)C
B4

; L =
12CL
B2R2

a

;

D =
96C2D

B3
; ξ =

ξ

Ra
; f =

242C3

B4
f ;

Λ =
8CΛ
B

=
D

L
· (10)
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Now, eliminating overbars, we obtain a scaled free energy
density

f = fb −
D

(ξ2 + 1)3/4
Q+

L

ξ2 + 1
Q2 (11)

where

fb = τQ2 − 2Q3 +Q4 (12)

is the bulk free energy density, while the last two terms in
equation (11) constitute the free energy density generated
by the random field.

The bulk isotropic-nematic phase transition takes
place at τ = 1 to a nematic phase in which the order
parameter Q = 1. The bulk undercooling limit occurs at
τ = 0. The solutions of dfb/dQ = 0 occur at

Q10 = 0; Q20 =
3
4

(1− Φ); Q30 =
3
4

(1 + Φ) (13)

where Φ = (1−8τ/9)1/2. The solutions Q10 and Q30 corre-
spond, respectively, to the isotropic and nematic minima.
The function fb(Q) possesses only these two minima, with
a maximum at Q20.

Minimizing equation(11) with respect to ξ leads to

ξ = 0 when Q <
3
4
Λ (14)

and

ξ =

[(
4Q
3Λ

)4

− 1

]1/2

when Q >
3
4
Λ. (15)

From (11), (14), and (15) the free energy density generated
by the random field is given by

v1(Q) = −DQ+
D

Λ
Q2 when Q <

3
4
Λ (16)

and

v2(Q) = − 27
256

DΛ3Q−2 when Q >
3
4
Λ. (17)

We note that the equations (16) and (17) become identical
with the corresponding ones obtained in paper [21] in the
limit L = 1. The existence of two independent parame-
ters generates a completely different phase diagram in the
relative low randomness régime.

3 The paranematic-speronematic phase
transition

For low order parameters Q, the correlation length ξ is
zero, and director orientations are correlated only on Ra.
The first term −DQ in the corresponding free energy
density (16) is as though there were a fixed field on the
molecules. The second term DQ2/Λ = LQ2 is the free en-
ergy density cost in changing molecular orientation from
point to point. When the disorder is comparable to the
elastic constant (Λ ≥ 1) this term is negligible, but the
two terms become comparable at low values of Λ.

Relaxing the condition Q < 3Λ/4, the free energy den-
sity corresponding to the isotropic phase in our model

fI = −DQ+
(
τ +

D

Λ

)
Q2 − 2Q3 +Q4 (18)

favours a paranematic-I (less ordered)-paranematic-II
(more-ordered) first order phase transition. The equi-
librium condition (∂fI/∂Q) = f ′I = 0 defines the
order parameter profile Q(τ,D,Λ). The paranematic-I-
paranematic-II phase transition occurs at τ = 1 +D(1−
1/Λ). A tricritical point exists for f ′′I = f ′′′I = 0 which
gives Dc = 0.5, Qc = 0.5, and τ + Dc/Λc = 1.5. For
D < Dc the Q(τ,D,Λ) curves show a discontinuous (first
order) paranematic-I-paranematic-II transition which be-
comes second order atD = Dc. ForD > Dc the Q(τ,D,Λ)
curves relate continuously the two phases (the order pa-
rameter Q will increase smoothly as temperature is de-
creased). This behaviour is related to that of a nematic
placed in a non-random field, i.e., a field in an uniform di-
rection. The uniform external field problem was first stud-
ied by Fan and Stephen [41] and there is now an extensive
literature, including recent experimental verification [42].

At higher values of Q the cost of changing the orienta-
tion from point to point is increased. The system responds
by increasing the length scale ξ over which the director ori-
entations are correlated. In the low disorder limit D→ 0,
the true nematic phase with infinite ξ is recovered.

The free energy density corresponding to higher values
of order parameter Q,

fN = − 27
256

DΛ3Q−2 + τQ2 − 2Q3 +Q4 (19)

has only one minimum corresponding to the speronematic
phase. It is interesting to note that a magnetic ordering
field generates two speromagnetic phases [43].

Considering the constraints given by conditions (16)
and (17) it is immediately clear that there are two com-
pletely different phase diagrams, one for 0 < D < Dc

and another for D > Dc. In Figure 1 we show the
(Λ, τ) phase diagram for D = 0.2. For low values of Λ
(Λ < Λt = 1.183) there is a discontinuous paranematic-I-
speronematic phase transition (the paranematic-II min-
imum does not fulfill the condition Q < 3Λ/4). At
Λt = 1.183 all three phases are in equilibrium so that
it can be considered as a triple point. At higher values
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Fig. 1. The (τ, Λ) phase diagram for D = 0.2 showing first-
order phase transition (full line), triple point ©, and contin-
uous phase transition (dashed line). Region I: paranematic-I
phase is thermodynamically stable; region II: paranematic-II
phase is stable; region III; speronematic phase is stable.

Fig. 2. Plot of the paranematic-speronematic phase diagram
for D = 1.0. The full line denotes the first order phase tran-
sition, the dashed line the continuous transition and the circle
the critical point.

of Λ (Λ > Λt) there are two phase transitions, a discon-
tinuous one between the paranematic-I and paranematic-
II phases at higher temperatures, and a continuous one
between the paranematic-II and speronematic phases at
lower temperatures.

For D > Dc the transition paranematic-I-
paranematic-II becomes continuous. The (Λ, τ) phase
diagram for D = 1.0 is shown in Figure 2. The results
confirm the experimental predictions. The first order tran-
sition temperature is reduced from τ = 0.98 at Λ = 0.1 to
τ = 0.805 at Λ = 1.2. At Λc ' 1.25 there is a tricritical
point beyond which the transition becomes continuous.
The continuous transitions paranematic-II-speronematic,
in Figure 1, and paranematic-speronematic for Λ > Λc, in
Figure 2, could be an unphysical consequence of the pro-
cedure which consider ξ as a variational parameter. Thus,
the procedure induces the constraint Q < 3Λ/4 for the

Fig. 3. Plots of Q(τ ) for different Λ at D = 1.0. Full line:
the bulk Q(τ ) (D = 0); dotted line: Λ = 1; dash-dotted line:
Λc = 1.3; and dashed line: Λ = 1.5.

paranematic phase as well as Q > 3Λ/4 for the sperone-
matic phase. In the case D = 0.2 (see Fig. 1), for Λ < Λt,
the paranematic-II minimum disappears because it does
not fulfil the constraint Q > 3Λ/4. In the second case
(D = 1; see Fig. 2), for Λ > Λc the paranematic minimum
disappears due to the same condition. This type of phase
diagram is perfectly equivalent with that obtained in [21].

The general topology of the phase diagram in D−Λ−τ
space would be as follows. In the limit of low randomness
(D < Dc) the region in (Λ, τ) over which the paranematic-
II phase occurs shrinks with increasing D. The tricritical
point which occurs in the limit of relatively large random-
ness (D > Dc) would shift to large Λ with increasing D.

In Figure 3 we show the profiles of the order parame-
ters as a function of temperature for a few typical values
of Λ. For Λ < Λc there is a discontinuity in Q(τ) at the
first order phase transition, whereas for Λ > Λc there is a
discontinuity in the slope dQ/dτ . The behaviour of Q(τ)
curves confirms the experimental results in the sense that
the bulk first order isotropic-nematic phase transition is
weakened and eventually suppressed when the randomness
increases.

The behaviour of the correlation length ξ as a function
of temperature τ for a number of different values of Λ
is shown in Figure 4. ξ is a quantity of key importance
for understanding of phase transition in the presence of
disorder. ξ is in fact a direct measure of the “resistance”
or the “stability” of the nematic phase to the presence
of quenched disorder. In principle, ξ could be larger than
the typical length over which the disordering structure is
correlated [12]. As expected, ξ increases as τ decreases,
and indeed as Q increases.

We postpone further discussion of the results to the
last section. In the next section we discuss the influence
of the random field on the dynamics of formation of a
speronematic phase when the paranematic fluid is cooled
quickly, or quenched, to a temperature at which the sper-
onematic is thermodynamically stable and the parane-
matic is metastable.
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Fig. 4. The variation of the correlation length ξ as a function
of temperature τ for D = 1.0. Full line: Λ = 1; dashed line:
Λ = 1.5.

4 Moving interface-phase field model

Modelling the speronematic-paranematic interface by a
smooth transition region of finite width in the phase-field
variable (or order parameter) we describe the time evo-
lution of the order parameter using the TDGL equation
appropriate to non-conserved order parameters,

β
∂

∂t
Qij(r, t) = −δF [Q]

δQij
(20)

where β is a transport coefficient related to the rotational
viscosity of the nematic. In the present work we take β
to be constant. The same equation with an additional
Langevin noise term is known from the theory of critical
dynamics, where it is called model A in the classification
of Hohenberg and Halperin [44].

In this paper we consider a system under conditions
that allows an isothermal base state, in which the sperone-
matic and paranematic phases are separated by a planar
interface of finite width (usually called a domain wall)
perpendicular to the z-axis, and which propagates with
normal velocity +c into the paranematic phase. Using the
equations (3– 5, 7), and the scaling (10), the TDGL equa-
tion (20) becomes

∂Q

∂t
− ∂2Q

∂z2
= − ∂f

∂Q
(21)

where f is the free energy density given by the equa-
tions (18) and (19) for the paranematic and sperone-
matic phases, respectively. Appropriate units for distance
and time are respectively ζ = (24CL/B2)1/2 and t∗ =
16Cβ/B2.

The domain wall solution of equation (21) interpolates
between the paranematic minimum, valid for z →∞, and
speronematic minimum, valid for z → −∞. This domain
wall or travelling wave solution has the form

Q(z, t) = Q(z − ct) = Q(z′) (22)

where z′ is a spatial variable in a reference frame moving
with the interface velocity c in the positive z direction.
Transforming to this variable, we obtain

Q′′ + cQ′ =
∂f

∂Q
(23)

where prime denotes differentiation with respect to z′.
An appropriate form of the free energy density is the

following

f = τQ2 − 2Q3 +Q4

+
1
2

(v1 + v2) +
1
2

(v1 − v2) tanh
z′

w
(24)

where v1 is the free energy density generated by the ran-
dom field for the paranematic phase (16), v2 is the corre-
sponding form for the speronematic phase (17), and w is
the characteristic thickness of the interface. In what fol-
lows we adopt a linearized form of v2

v2 = − 81
256

DΛ3Q−2
30 +

27
128

DΛ3Q−3
30 Q (25)

where Q30 is the bulk nematic minimum (13). We note
that the results obtained for paranematic-speronematic
phase transition with the equation (25) are almost the
same with those obtained with the equation (17) (the dif-
ference is less than 1%).

The paranematic minimum Q1 is the solution of the
equation (∂f/∂Q)z′=∞ = 0 whereas the speronematic
minimum Q3 is the solution of (∂f/∂Q)z′=−∞ = 0. Using
the equations (24) and (25), the solutions of TDGL equa-
tion (23) subject to the boundary conditionsQ(−∞) = Q3

and Q(∞) = Q1 is given by

Q(z′) =
1
2

(Q3 +Q1)− 1
2

(Q3 −Q1) tanh
z′

w
· (26)

The characteristic thickness of the interface is

w =
√

2
Q3 −Q1

(27)

and its velocity is given by

c = 3
√

2(Q3 +Q1 − 1)−
√

2D
Λ(Q3 −Q1)

· (28)

We note that in the case of a bulk nematic-isotropic mov-
ing interface (without random field) the well-known re-
sults are obtained [31]

Q0(z′) =
1
2
Q30

(
1− tanh

z′
w0

)
; w0 =

√
2

Q30
;

c0 = 3
√

2(Q30 − 1). (29)

We show in Figure 5 the behaviour of the domain wall
velocity as a function of Λ at D = 1.0 and τ = 0.75 (this
value of temperature is chosen such that for all values
of Λ the speronematic phase is thermodynamically stable
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Fig. 5. The domain wall velocity c as a function of Λ at D = 1
and τ = 0.75 (full line). Dotted line: the velocity c0 of the
nematic-isotropic moving interface without random field.

Fig. 6. The characteristic thickness of the interface w as a
function of Λ at D = 1 and τ = 0.75 (full line). Dotted line:
same quantity without random field.

and the paranematic phase is metastable). Due to second
term in the r.h.s. of equation (28), the random field slows
down the motion of the interface. This result can be ex-
plained considering that an extra degree of disorder in the
system generates a slowing of the moving interface (simi-
lar with the influence of biaxiality discussed in [32]). It is
also confirmed by recent simulations [45]. For Λ ≤ 0.75 the
velocity goes negative (even if the speronematic phase is
stable and the paranematic one is metastable, the parane-
matic advances into the speronematic). For low values of
Λ, the elastic force represented by the effective elastic con-
stant L becomes large and the second term in the r. h. s.
of equation (28) becomes important.

Figure 6 shows the dependence of the characteristic
thickness of the interface w on Λ at D = 1 and τ = 0.75.
The interface width is increased by the random field. The
typical values of the interface thickness for usual liquid
crystals are of the order of 10−8m. In all matrices the
characteristic size of voids is typically below the microme-
ter range (for some matrices even in the nanometer range).

Depending on the ratio of the interface thickness to the
pore size there are two distinct kinds of first-order phase
transition behaviour [46]. If the interface thickness is less
than the pore size, intrapore phase coexistence is observed,
whereas if the interface thickness is larger than the pore
size, speronematic order nucleates on a scale larger than
the mean pore size and grows simultaneously in pores of
all sizes.

5 Conclusions

In the first part of this paper (Sects. 2 and 3) we have
discussed a generalization of the random anisotropy ne-
matic model presented in [21]. Including the competition
between the quenched disorder and the elastic force, the
results are strongly dependent on two parameters: the de-
gree of disorder (anisotropy) D and the ratio of anisotropy
to elastic constant Λ = D/L. In the limit of low random-
ness the model predicts the existence of a triple point
(for Λ = Λt) where the three phases (paranematic-I,
paranematic-II, and speronematic) coexist in equilibrium.
In the same limit, at low values of Λ (Λ < Λt) there ex-
ists a first order paranematic-I-speronematic phase tran-
sition. At higher values of Λ (Λ > Λt) there are two phase
transitions, a first order one between paranematic-I and
paranematic-II at higher temperatures, and a continuous
one between paranematic-II and speronematic at lower
temperatures.

At relatively large D we have found a reduced tem-
perature at the transition, together with a first order
paranematic-speronematic transition whose strength di-
minishes as Λ increases. We have obtained that the first
order transition ends at a tricritical point, beyond which
the transition becomes continuous. The results obtained
in this relatively large randomness régime are perfectly
equivalent with those of paper [21] and are confirmed by
experiment. We emphasize that the analysis of Maritan
et al. [22] predicts only a first order isotropic-nematic
phase transition since the competition between quenched
disorder and elastic force was not considered.

The second part of the paper (Sect. 4) is devoted to the
influence of the random field on the growth of the sperone-
matic phase into an undercooled paranematic phase. We
have constructed a phase field model of the speronematic-
paranematic moving interface. In this theory there is only
one relevant order parameter. This is the largest eigen-
value of the liquid crystal ordering matrix. The princi-
pal axes of this matrix are not spatially dependent in
this model. Considering that the free energy density gen-
erated by the random field acts as an external poten-
tial, we have fitted a specific form of this field (see Eq.
(24)) which interpolates between the paranematic poten-
tial valid for z′ →∞ and speronematic potential valid for
z′ → −∞. We have written down the travelling-wave pro-
files which move with a constant velocity and conserve
their initial shape. These are solutions of the one-
dimensional TDGL equation. When the isothermal sys-
tem is initially quenched into the metastable régime
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of the paranematic phase the time evolution of the or-
der parameter is a domain wall solution of the TDGL
equation. Domain walls constitute the simplest form of
topological defects and are surfaces - planar in our case
- which separate domains of the two equilibrium phases.
The domain walls propagate with a unique velocity which
depends on the parameter Λ. We have obtained the result
that the random field slows down the motion of the inter-
face and increases the interface width. We have obtained
also an unexpected result in the sense that for low Λ the
velocity goes negative.

This simplified phase field model omits crucial fea-
tures of the relevant physics. The thermal coupling (in-
cluding the effect of the latent heat emission at the inter-
face) can have rather profound consequences [47]. In the
same framework it would be very interesting to analyse
the interaction between the complex order parameter and
hydrodynamic degrees of freedom.

Nevertheless the random anisotropy nematic model
correlated with the associated time-dependent Ginzburg-
Landau model gives some insight into the behaviour of
the paranematic-speronematic phase transition as well as
of the moving interface and is a necessary prerequisite for
further work.
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